MTH 310 HW 7 Solutions

March 18, 2016

Section 4.2, Problem 5c

Compute $\operatorname{gcd}\left(x^{4}+3 x^{2}+2 x+4, x^{2}-1\right)$ in \mathbb{Z}_{7}.
Answer. Note that by the division algorithm, $x^{4}+3 x^{2}+2 x+4=\left(x^{2}+4\right)\left(x^{2}-1\right)+2 x+3$ and $\left(x^{2}-1\right)=(2 x+3)(3 x+3)=2(x+4)(3 x+3)$, so by the Euclidean algorithm the greatest common divisor is $x+4$ (which of course is also $x-1$ in \mathbb{Z}_{7}). Note that the greatest common divisor is defined to be monic, so the greatest common divisor is not $2 x+3$.

Section 4.2, Problem 13

Let \mathbb{F} be a field and $a(x), b(x), c(x) \in \mathbb{F}[x]$. If $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, show $a(x) \mid c(x)$.
Answer. Since $\operatorname{gcd}(a(x), b(x))=1$, there are polynomials $p(x), q(x) \in \mathbb{F}[x]$ with $1=$ $a(x) p(x)+b(x) q(x)$. Since $a(x) \mid b(x) c(x)$ there is a polynomial $d(x) \in \mathbb{F}[x]$ with $a(x) d(x)=$ $b(x) c(x)$. Then we have that if $k(x)=(c(x) p(x)+d(x) q(x))$, then $c(x)=1 c(x)=$ $(a(x) p(x)+b(x) q(x)) c(x)=a(x) c(x) p(x)+b(x) c(x) q(x)=a(x) c(x) p(x)+a(x) d(x) q(x)=$ $a(x)(c(x) p(x)+d(x) q(x))=a(x) k(x)$, so $a(x) \mid c(x)$.

Section 4.3, Problem 6

Show that $x^{2}+1$ is irreducible in $\mathbb{Q}[x]$.
Answer. Assume not. Then $x^{2}+1=(a x+b)(c x+d)$ for some $a, b, c, d \in \mathbb{Q}$, where $a \neq 0 \neq c$. This implies that if $y=\frac{-b}{a}, y^{2}+1=0$, which implies that there is a square root of -1 in \mathbb{Q}, a contradiction.

